تشخیص سرطان سینه با کمک هوش مصنوعی جدید
محققان نوعی پلتفرم هوش مصنوعی برای بررسی ضایعات سرطانی بالقوه در اسکن ماموگرافی ایجاد کردهاند.

باشگاه خبرنگاران جوان- این الگوریتم جدید خلاف الگوریتمهای پیشین، قابل تفسیر است؛ یعنی روشی که با آن به نتیجه نهایی رسیده است را به پزشکان نشان میدهد.
این پلتفرم توسط مهندسان رایانه و رادیولوژیستهای دانشگاه دوک(Duke) ساخته شده است.
محققان هوش مصنوعی را آموزش دادهاند تا درست مانند یک رادیولوژیست آموزش دیده محل ضایعات را تعیین و آنها را ارزیابی کند.
این روش میتواند یک پلتفرم آموزشی کارآمد برای آموزش نحوه تفسیر تصاویر ماموگرافی به دانشجویان باشد و میتواند به پزشکان مناطق کم جمعیت در سراسر جهان که به طور منظم اسکن ماموگرافی را بررسی نمیکنند، کمک کند تا تصمیمات بهتری در زمینه مراقبهای بهداشتی بگیرند.
جوزف لو (Joseph Lo)، استاد رادیولوژی در دانشگاه دوک گفت: اگر قرار است که رایانه به ما در گرفتن تصمیمات مهم کمک کند، پزشکان باید اطمینان حاصل کنند که هوش مصنوعی بر اساس موارد منطقی به نتیجه نهایی رسیده است.
ما نیازمند الگوریتمهایی هستیم که نه تنها کار میکنند؛ بلکه روند کار را توضیح میدهند و نمونههایی نشان میدهند که مشخص میکند چگونه به نتیجه نهایی رسیدهاند.
به این ترتیب چه پزشک با نتیجه موافق باشد، چه نباشد؛ هوش مصنوعی به تصمیم گیری بهتر کمک میکند.
هوش مصنوعی مهندسی که به بررسی تصاویر پزشکی میپردازد، صنعت بزرگی است.
هزاران الگوریتم مستقل در حال حاضر وجود دارند و سازمان غذا و داروی آمریکا بیش از ۱۰۰ مورد از آنها را برای استفاده بالینی تایید کرده است.
با این حال فرقی نمیکند از هوش مصنوعی برای بررسی نتایج MRI، سیتی اسکن یا ماموگرافی استفاده کنید؛ تعداد کمی از آنها از مجموعه دادههای اعتبارسنجی با بیش از ۱۰۰۰ تصویر استفاده میکنند.
این کمبود داده و شکستهای قابل توجه چندین مورد اخیر بسیاری از پزشکان را بر آن داشته تا استفاده از هوش مصنوعی در تصمیمات پزشکی پر خطر را زیر سوال ببرند.
برای مثال، در یک مورد هوش مصنوعی حتی با وجود آن که محققان آن را با تصاویر ثبت شده توسط تجهیزات مختلف آموزش داده اند، با شکست مواجه شد.
این هوش مصنوعی یاد گرفت که از تفاوتهای ظریفی که توسط خود تجهیزات برای تشخیص تصاویر سرطانی معرفی میشود، استفاده کند و احتمال سرطانی بودن این ضایعات را در بالاترین حالت بداند به جای آن که منحصرا بر ضایعات قابل توجه تمرکز کند.
همان طور که انتظار میرود، این هوش مصنوعی نتوانست با بیمارستانهای دیگری که تجهیزات متفاوتی داشتند، منطبق شود؛ اما از آن جا که هیچ کس نمیدانست الگوریتمها چه چیزی را مورد بررسی قرار میدهند، هیچ کس متوجه نشد که این الگوریتم در واقعیت با شکست مواجه خواهند شد.